
Accelerating the Numerical Computation of
Positive Roots of Polynomials using Improved

Bounds

Kinji Kimura1, Takuto Akiyama2, Hiroyuki Ishigami3, Masami

Takata4, and Yoshimasa Nakamura5

1,2,3,5Graduate School of Informatics, Kyoto University,
4Academic Group of Information and Computer Sciences,

Nara Women’s University

1



Aim
Accelerating
the numerical computation of positive roots of poly-
nomials using improved bounds

Download site
You can download our program from the following
website:
URL:
http://www-is.amp.i.kyoto-u.ac.jp/
kkimur/REALROOT.html

2



Strategy
Based on exact computation using arbitrary preci-
sion arithmetic(GMP:GNU Multiple Precision Arith-
metic Library) and
adoption of the continued fraction (CF) method

3



Motivation(1)
Nonlinear polynomial equations:

c0 + c1 + c2 = 0, c0c1 + c0c2 + c1c2 = 0,

c0c1c2 − 2 = 0

By virtue of Gröbner basis, we can get

c0 + c1 + c2 = 0, c21 + c22 + c2c1 = 0,

c32 − 2 = 0.

After some computations, c2 can be regarded as a
separable variable.

4



Motivation(2)

“separable” means,
if the root of c2 is real,
then roots of all variables(c0, c1, c2) are real.

For the univariate polynomial:c32 − 2 = 0, we can
apply the CF method. We can get the real root of c2
which is isolated into a specific interval (0,2].

5



Motivation(3)
A famous problem in a history of Japanese mathematics,

a

b c

d

e
f

p1 = a2d2(b2 + c2 + e2 + f2)− a2d4 − a4d2

+b2e2(a2 + c2 + d2 + f2)− b2e4 − b4e2

+c2f2(a2 + b2 + e2 + d2)− c2f4 − c4f2

−a2b2c2 − a2e2f2 − b2f2d2 − c2d2e2

p2 = d3 − b3 − 271

p3 = b3 − c3 − 217

p4 = c3 − a3 − 608/10

p5 = a3 − e3 − 3262/10

p6 = e3 − f3 − 61

6



Motivation(4)

• By virtue of Gröbner basis, we can regard a vari-
able f as a separable variable.

• The degree of the univariate polynomial of f is
1458. (The coefficients of the degree of multi-
ples of 3 are not zero and the other coefficients
are zero.)

• In order to solve nonlinear polynomial equa-
tions with Gröbner basis, we have to isolate
positive roots of a higher-degree univariate poly-
nomial.

7



Demo

From the feature that the coefficients of the degree of
multiples of 3 are not zero and the other coefficients
are zero, we can transform the univariate polynomial
of the degree 1458 of f into the univariate polyno-
mial of the degree 486 with x = f3.

We just treat the univariate polynomial of the degree
486.

8



Continued fraction method(1)
Theorem 1(Descartes’ rule of signs)
For a polynomial equation

f(x) = a0x
n + · · ·+ an−1x+ an = 0, x ∈ R, ai ∈ R,

W = the number of “changes of sign” in the list of coefficients
{a0, a1, . . . , an}, except for ai = 0

N = the number of positive roots in (0,∞)

Under these definitions, the following relation holds:

N = W − 2h,

where h is a non-negative integer.
9



Continued fraction method(2)

Using Theorem 1, the number of positive roots of f(x) = 0 is

determined as the following conditional branch:

• Case where W = 0: f(x) = 0 does not have any positive

roots in the interval x ∈ (0,∞).

• Case where W = 1: f(x) = 0 has only one positive root

in the interval x ∈ (0,∞).

• Case where W ≥ 2: the number of positive roots of f(x) =

0 cannot be determined.

10



Continued fraction method(3)
In the case that W = 1, the root is included in (0, u b], where

u b denotes the upper bound of the positive roots of f(x) = 0.

In the case that W ≥ 2, the interval (0,∞) should first be di-

vided into two intervals.

This division is performed by x → x + 1 and x → 1
x+1.

replacement
the interval

of the original poly.
the interval

the replaced poly.
x → x+1 (1,∞) (0,∞)

x → 1
x+1 (0,1) (0,∞)

Then, Descartes’ rule of signs can be applied to each interval.

11



Synthetic division and the cost
The replacements needs synthetic division. As an example, the
following table shows the calculation of the coefficients of

g5(x) = a0(x+1)3 + a1(x+1)2 + a3(x+1)+ a4

= a0x
3 + (3a0 + a1)x

2 + (3a0 +2a1 + a2) + (a0 + a1 + a2 + a3).

a0 a1 a2 a3
a0 a0 + a1 a0 + a1 + a2

a0 a0 + a1 a0 + a1 + a2 a0 + a1 + a2 + a3
a0 2a0 + a1

a0 2a0 + a1 3a0 +2a1 + a2
a0

a0 3a0 + a1

Clearly, the cost is O(n2), where n is the highest order of the

polynomial equation.

12



Acceleration of the CF method using a lower bound
In order to speed up the CF method, we need an origin shift.

A lower bound l b of f(x) = 0 can be computed in the following

procedure:

1. Replace x with 1/x in f(x).

2. Compute u b, which means the upper bound of the positive

roots of the replaced polynomial equation.

3. Obtain l b as l b = 1/u b.

The lower bound l b can be used as the shift amount.
13



Computation of the upper bound of positive roots(1)
Theorem 2(Akritas, 2006)

Let f(x) be a polynomial with real coefficients, and assume a0 > 0. Let

d(f) and t(f) denote its degree and number of terms, respectively.

In addition, assume that f(x) can be reshaped as follows:

f(x) = q1(x)− q2(x) + · · · − q2m(x) + g6(x),

where the polynomials qi(x), i = 1, . . . ,2m, and g6(x) have only positive
coefficients. Moreover, assume that, for i = 1, 2, . . . , m, we obtain

q2i−1(x) = c2i−1,1x
e2i−1,1 + · · ·+ c2i−1,t(q2i−1)x

e
2i−1,t(q2i−1)

and
q2i(x) = b2i,1x

e2i,1 + · · ·+ b2i,t(q2i)x
e2i,t(q2i)

where e2i−1,1 = d(q2i−1) and e2i,1 = d(q2i), and the exponent of each
term in q2i−1(x) is greater than the exponent of each term in q2i(x).

14



Computation of the upper bound of positive roots(2)

If t(q2i−1) ≥ t(q2i) for all indices i = 1,2, · · · ,m, then the upper bound of

the positive roots of f(x) = 0 is defined by

u b = max
i=1,2,...,m

{ b2i,1

c2i−1,1

 1
e2i−1,1−e2i,1

, . . . ,

 b2i,t(q2i)

c2i−1,t(q2i)


1

e2i−1,t(q2i)
−e2i,t(q2i)

}
, (1)

for any permutation of the positive coefficients c2i−1,j, j = 1,2, · · · , t(q2i−1).

Otherwise, for each of the indices i for which we obtain t(q2i−1) < t(q2i),

we break up one of the coefficients of q2i−1(x) into t(q2i) − t(q2i−1) + 1

parts, so that t(q2i) = t(q2i−1). We can then apply the formula defined in

Eq. (1).
15



Computation of the upper bound of positive roots(3)

The sharpness of the upper bound is dependent on pairing.

3x3 − 5x2 +4x+7 → creating the pair
{
3x3,−5x2

}
easily

3x3 − 5x2 − 4x+7 → not creating the pair immediately

In this case, since

3x3 =
3

2
x3 +

3

2
x3 = x3 +2x3 = · · · ,

we can create the pair as32x
3,−5x2

 ,

32x
3,−4x

 or
{
x3,−5x2

}
,
{
2x3,−4x

}
or · · · .

16



“Local-max” bound and “first-λ” bound
Using Theorem 2, Akritas et al. proposed the following bounds.

“Local-max” bound� �
Target polynomial : x3 +10100x2 − x− 10100

pairing :


10100

2
x2,−x

 and

10100

22
x2,−10100


bound : 2� �

“First-λ” bound� �
Target polynomial : x5 +2x4 − 3x3 +4x2 − 5x− 1010

= x5 +2x4 − 3x3 +2x2 +2x2 − 5x− 1010

pairing :
{
x5,−3x3

}
,
{
2x4,−5x

}
, and

{
2x2,−1010

}
bound :

√
1010/2 = 50000

√
2� �

17



New upper bounds(1)
We propose “local-max2” bound, tail-pairing “first-λ” type-I bound,
and tail-pairing “first-λ” type-II bound.

“Local-max2” bound� �
Target polynomial;x3 +10100x2 − x− 10100

pairing :


10100

2
x2,−x

 and

10100

2
x2,−10100


bound :

√
2� �

It can be proven that the local-max2 bound is better than
or equal to the local-max bound for all polynomials.
cf. “Local-max” bound proposed by Akritas et al.
We pair the terms

{
10100

2 x2,−x
}

and
{
10100

22
x2,−10100

}
, and

obtain a bound estimate of 2.
18



New upper bounds(2)

Target polynomial : x5 +2x4 − 3x3 +4x2 − 5x− 1010

Tail-pairing “first-λ” type-I bound� �

pairing :
{
x5,−3x3

}
,
{
2x4,−1010

}
, and

{
4x2,−5x

}
bound : 4

√
1010/2 = 100 4√50

� �
Tail-pairing “first-λ” type-II bound� �

pairing :
{
x5,−1010

}
,
{
2x4,−3x3

}
, and

{
4x2,−5x

}
bound :

5√
1010 = 100� �

cf. “First-λ” bound proposed by Akritas et al.
We pair the terms

{
x5,−3x3

}
,
{
2x4,−5x

}
, and

{
2x2,−1010

}
,

and obtain a bound estimate of
√
1010/2 = 50000

√
2.

19



Numerical experiment(1)

To evaluate the effect of the proposed bounds, we implement
the CF method with the following bounds:

• FL+LM: (max(FL, LM),introduced by Akritas et al.)
• LMQ: local-max quadratic bound (introduced by Akritas et

al.)
• TPFL-I+LM2: (max(TPFL-I,LM2),our proposed bound)
• TPFL-II+LM2: (max(TPFL-II,LM2),our proposed bound)

Note that FL, LM, TPFL, and LM2 denote the first-λ bound,
local-max bound, tail-pairing first-λ bound, and local-max2 bound,
respectively.

20



Numerical experiment(2)

As test polynomial equations, the following were used:

• Laguerre: L0(x) = 1, L1(x) = 1 − x, and Ln+1(x) =
1

n+1((2n+1− x)Ln(x)− nLn−1(x))

• Chebyshev-I: T0(x) = 1, T1(x) = x, and Tn+1(x) =

2xTn(x)− Tn−1(x)

• Chebyshev-II: U0(x) = 1, U1(x) = 2x, and Un+1(x) =

2xUn(x)− Un−1(x)

• Wilkinson: Wn(x) =
∏n
i=1(x− i)

• Mignotte: Mn(x) = xn − 2(5x− 1)2

• Randomized polynomial

21



Numerical experiment(3)

Polynomial Degree Time (s)

Class FL
+LM LMQ TPFL-I

+LM2
TPFL-II
+LM2

Laguerre 100 0.01 0.01 0.01 0.01

Laguerre 1000 43.51 48.20 41.77 36.57

Laguerre 1500 221.10 242.69 217.21 189.34

Laguerre 2000 704.95 755.48 683.57 617.01

Chebyshev-I 100 0.01 0.01 0.01 0.01

Chebyshev-I 1000 40.22 41.11 36.30 36.48

Chebyshev-I 1500 206.87 210.86 184.45 185.61

Chebyshev-I 2000 650.85 638.67 590.36 590.36

22



Chebyshev-II 100 0.01 0.01 0.01 0.01

Chebyshev-II 1000 40.48 40.88 35.74 35.56

Chebyshev-II 1500 203.53 210.73 182.73 182.67

Chebyshev-II 2000 652.94 636.42 599.48 579.28

Wilkinson 100 0.00 0.00 0.00 0.00

Wilkinson 1000 4.53 4.92 4.52 4.54

Wilkinson 1500 22.45 23.82 22.46 22.46

Wilkinson 2000 70.46 73.97 70.59 70.60

Mignotte 100 0.00 0.00 0.00 0.00

Mignotte 1000 0.04 0.04 0.04 0.04

Mignotte 1500 0.12 0.12 0.12 0.12

Mignotte 2000 0.27 0.27 0.27 0.27
23



Numerical experiment(4)
Execution time for random polynomials defined as

f(x) =
r∏

i=0

(x− xi)
s∏

j=0

(x− αj + iβj)(x− αj − iβj),−109 ≤ xi, αj, βj ≤ 109.

Parameters Degree Time (s), Avg (Min/Max)

FL+LM LMQ

s = 40
r = 20

100 0.015(0.01/0.02) 0.0188(0.01/0.03)

s = 490
r = 20

1000 29.046(19.15/43.61) 30.161(17.47/49.39)

s = 740
r = 20

1500 135.59(94.78/203.07) 139.06(92.1/211.72)

s = 990
r = 20

2000 415.37(296.62/645.55) 425.47(270.36/835.35)

24



Execution time for random polynomials defined as

f(x) =
r∏

i=0

(x− xi)
s∏

j=0

(x− αj + iβj)(x− αj − iβj),−109 ≤ xi, αj, βj ≤ 109.

Parameters Degree Time (s), Avg (Min/Max)

TPFL-I+LM2 TPFL-II+LM2

s = 40
r = 20

100 0.0145(0.01/0.02) 0.0127(0.01/0.02)

s = 490
r = 20

1000 27.325(19.05/38.39) 26.88(17.22/39.38)

s = 740
r = 20

1500 128.07(91.69/179.71) 123.84(86.17/176.16)

s = 990
r = 20

2000 384.11(266.41/617.17) 368.36(271.71/603.31)

25



Computing environment

CPU:Intel Core i7 3770K
Mem:32Gbyte, CC:gcc 4.6.3
LIB:GNU Multiple Precision Arithmetic Library, be-
cause the CF method needs multiple-precision arith-
metic to compute the coefficients in the replaced poly-
nomial equations.

26



Conclusions

• We have proposed new lower bounds(local-max2
bound and tail-pairing first-λ bound).

• The numerical results show that the average exe-
cution time of the CF method with both the local-
max2 bound and the tail-pairing first-λ bound is
faster than or nearly equal to that with the local-
max bound, first-λ bound, and local-max quadratic
bound proposed by Akritas et al. for all polynomial
equations.

27



Thank you for your kind attention!

28


